Q.
Let S be the area bounded by the curve y=sinx(0≤x≤π) and the x-axis and T be the area bounded by the curves y=sinx(0≤x≤2π),y=acosx(0≤x≤2π) and the x-axis (where a∈R+). If S:T=1:31 then which of the following is(are) correct?
We have S=0∫πsinxdx=2, so T=32 where
Now T=0∫tan−1asinxdx+tan−1a∫π/2acosxdx=32 i.e. −cos(tan−1a)+1+a(1−sin(tan−1a))=32,
i.e. −1+a21+1+a−1+a2a2=32⇒(a+1)−a2+1=32 ⇒a+31=a2+1 ⇒a=34