Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S= beginpmatrix-1 a 0 b endpmatrix ; a , b ∈ 1,2,3, ldots 100 and let Tn= A ∈ S: An(n+1)=I . Then the number of elements in displaystyle⋂ n =1100 T n is
Q. Let
S
=
{
(
−
1
0
a
b
)
;
a
,
b
∈
{
1
,
2
,
3
,
…
100
}
}
and let
T
n
=
{
A
∈
S
:
A
n
(
n
+
1
)
=
I
}
. Then the number of elements in
n
=
1
⋂
100
T
n
is _____
1639
148
JEE Main
JEE Main 2022
Matrices
Report Error
Answer:
100
Solution:
A
=
[
−
1
0
a
b
]
A
2
=
[
−
1
0
a
b
]
[
−
1
0
a
b
]
=
[
1
0
−
a
+
ab
b
2
]
∴
T
n
=
{
A
∈
S
;
A
n
(
n
+
1
)
=
I
}
∴
b must be equal to
1
∴
In this case
A
2
will become identity matrix and a can take any value from
1
to
100
∴
Total number of common element will be
100
.