Let S={1,2,3,4,5,6}, then the number of one-one functions, f:S⋅P(S), where P(S) denotes the power set of S, such that f(n)<f(m) where n<m is n(S)=6 P(S)={ϕ,{1},…{6},{1,2},…,{5,6},…,{1,2,3,4,5,6}} −64 elements
case −1 f(6)=S i.e. 1 option, f(5)= any 5 element subset A of S i.e. 6 options, f(4)= any 4 element subset B of A i.e. 5 options, f(3)= any 3 element subset C of B i.e. 4 options, f(2)= any 2 element subset D of C i.e. 3 options, f(1)= any 1 element subset E of D or empty subset i.e. 3
options,
Total functions =1080
Case −2 f(6)= any 5 element subset A of S i.e. 6 options, f(5)= any 4 element subset B of A i.e. 5 options, f′(4)= any 3 element subset C of B i.e. 4 options, f(3)= any 2 element subset D of C i.e. 3 options, f′(2)= any 1 element subset E of D i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =720
Case −3 f(6)=S f(5)= any 4 element subset A of ' S i.e. 15 options, f(4)= any 3 element subset B of A i.e. 4 options, f(3)= any 2 element subset C of B i.e. 3 options, f(2)= any 1 element subset D of C i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =360
Case −4 f(6)=S f(5)= any 5 element subset A of S i.e. 6 options, f(4)= any 3 element subset B of A i.e. 10 options, f(3)= any 2 element subset C of B i.e. 3 options, f(2)= any 1 element subset D of C i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =360
Case −5 f(6)=S f(5)= any 5 element subset A of S i.e. 6 options, f(4)= any 4 element subset B of A i.e. 5 options, f(3)= any 2 element subset C of B i.e. 6 options, f(2)= any 1 element subset D of C i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =360
Case −6 f(6)=S f(5)= any 5 element suhset A of S i e 6 options f(4)= any 4 element subset B of A i.e. 5 options, f(3)= any 3 element subset C of B i.e. 4 options, f(2)= any 1 element subset D of C i.e. 3 options, f(1)= empty subset i.e. 1 option
Total functions =360 ∴ Number of surch funstions =3240