Q.
Let S={1,2,3,4,5,6}. Then the number of one-one functions f:SβP(S), where P(S) denote the power set of S, such that f(m)βf(m) where n<m is _______
Let S={1,2,3,4,5,6}, then the number of one-one functions, f:Sβ P(S), where P(S) denotes the power set of S, such that f(n)<f(m) where n<m is n(S)=6 P(S)={Ο,{1},β¦{6},{1,2},β¦,{5,6},β¦,{1,2,3,4,5,6}β} β64 elements
case β1 f(6)=S i.e. 1 option, f(5)= any 5 element subset A of S i.e. 6 options, f(4)= any 4 element subset B of A i.e. 5 options, f(3)= any 3 element subset C of B i.e. 4 options, f(2)= any 2 element subset D of C i.e. 3 options, f(1)= any 1 element subset E of D or empty subset i.e. 3
options,
Total functions =1080
Case β2 f(6)= any 5 element subset A of S i.e. 6 options, f(5)= any 4 element subset B of A i.e. 5 options, fβ²(4)= any 3 element subset C of B i.e. 4 options, f(3)= any 2 element subset D of C i.e. 3 options, fβ²(2)= any 1 element subset E of D i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =720
Case β3 f(6)=S f(5)= any 4 element subset A of ' S i.e. 15 options, f(4)= any 3 element subset B of A i.e. 4 options, f(3)= any 2 element subset C of B i.e. 3 options, f(2)= any 1 element subset D of C i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =360
Case β4 f(6)=S f(5)= any 5 element subset A of S i.e. 6 options, f(4)= any 3 element subset B of A i.e. 10 options, f(3)= any 2 element subset C of B i.e. 3 options, f(2)= any 1 element subset D of C i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =360
Case β5 f(6)=S f(5)= any 5 element subset A of S i.e. 6 options, f(4)= any 4 element subset B of A i.e. 5 options, f(3)= any 2 element subset C of B i.e. 6 options, f(2)= any 1 element subset D of C i.e. 2 options, f(1)= empty subset i.e. 1 option
Total functions =360
Case β6 f(6)=S f(5)= any 5 element suhset A of S i e 6 options f(4)= any 4 element subset B of A i.e. 5 options, f(3)= any 3 element subset C of B i.e. 4 options, f(2)= any 1 element subset D of C i.e. 3 options, f(1)= empty subset i.e. 1 option
Total functions =360 β΄ Number of surch funstions =3240