F(mn)=f(m)⋅f(n)
Put m=1f(n)=f(1)⋅f(n)⇒f(1)=1
Put m=n=2 f(4)=f(2)⋅f(2)⎩⎨⎧f(2)=1⇒f(4)=1 or f(2)=2⇒f(4)=4
Put m=2,n=3 f(6)=f(2)⋅f(3)⎩⎨⎧ when f(2)=1f(3)=1 to 7f(2)=2f(3)=1 or 2 or 3 f(5),f(7) can take any value
Total =(1×1×7×1×7×1×7)+(1×1×3×1×7×1×7) =490