Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let r, s, t, u be the roots of the equation x4 + Ax3 + Bx2 + Cx + D = 0. If rs = tu, then
Q. Let
r
,
s
,
t
,
u
be the roots of the equation
x
4
+
A
x
3
+
B
x
2
+
C
x
+
D
=
0
. If
rs
=
t
u
, then
1506
218
Complex Numbers and Quadratic Equations
Report Error
A
A
2
D
=
C
2
26%
B
A
D
=
C
2
35%
C
A
D
=
C
21%
D
none of these
18%
Solution:
Let
rs
=
t
u
=
K
Let
r
+
s
=
P
;
t
+
u
=
Q
∴
x
4
+
A
x
3
+
B
x
2
+
C
x
+
D
=
(
x
2
−
P
x
+
K
)
(
x
2
−
Q
x
+
K
)
∴
A
=
−
(
P
+
Q
)
;
B
=
PQ
+
2
K
C
=
−
(
P
+
Q
)
K
;
D
=
K
2
∴
A
C
=
K
⇒
A
2
C
2
=
K
2
=
D
∴
A
2
D
=
C
2
.