We have r=iξ =jmaxββ£xiββxjββ£ and S2=nβ11βi=1βnβ(xiββxΛ)2
Now, consider (xiββxΛ)2=(xiββnx1β+x2β+β¦.+xnββ)2 =n21β[(xiββx1β)+(xiββx2β)+β¦.+(xiββxiββ1)] +(xiββxiβ+1)+β¦+(xiββxnβ)]β€n21β[(nβ1)r]2 β(xiββxΛ)2β€r2 βi=1βnβ(xiββxΛ)2β€nr2 βnβ11βi=1βnβ(xiββxΛ)2β€(nβ1)nr2β βSβ€rnβ1nββ