Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let R be a relation in N defined by R = (x,y): x + 2y = 8, x, y ∈ N . The range of R is
Q. Let
R
be a relation in
N
defined by
R
=
{(
x
,
y
)
:
x
+
2
y
=
8
,
x
,
y
∈
N
}
. The range of
R
is
2004
180
Relations and Functions
Report Error
A
{
2
,
4
,
6
}
34%
B
{
1
,
2
,
3
}
37%
C
{
1
,
2
,
3
,
4
,
6
}
21%
D
{
4
,
5
,
6
,
7
}
9%
Solution:
R
=
{(
x
,
y
)
:
x
+
2
y
=
8
,
x
,
y
∈
N
}
x
+
2
y
=
8
⇒
y
=
2
8
−
x
x
=
1
⇒
y
=
2
7
∈
/
N
;
x
=
2
⇒
y
=
3
∈
N
x
=
3
⇒
y
=
2
5
∈
/
N
;
x
=
4
⇒
y
=
2
∈
N
x
=
5
⇒
y
=
2
3
∈
/
N
;
x
=
6
⇒
y
=
1
∈
N
x
=
7
⇒
y
=
2
1
∈
/
N
;
x
=
8
⇒
y
=
0
∈
/
N
∴
R
=
{(
2
,
3
)
,
(
4
,
2
)
,
(
6
,
1
)}
∴
Range of
R
=
{
y
:
(
x
,
y
)
∈
R
}
=
{
1
,
2
,
3
}