aRa⇒5a is multiple it 5
So reflexive aRb⇒2a+3b=5α,
Now bRa 2b+3a=2b+(25α−3b)⋅3 =215α−25b=25(3α−b) =25(2a+2b−2α) =5(a+b−α)
Hence symmetric a R b ⇒2a+3b=5α b R c ⇒2b+3c=5β Now 2a+5b+3c=5(α+β) ⇒2a+5b+3c=5(α+β) ⇒2a+3c=5(α+β−b) ⇒aRc
Hence relation is equivalence relation.