Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let r be a real number and n ∈ N be such that the polynom ial 2x2+2x+1 divides the polynomial (x+1)n-r Then, (n, r) can be
Q. Let
r
be a real number and
n
∈
N
be such that the polynom ial
2
x
2
+
2
x
+
1
divides the polynomial
(
x
+
1
)
n
−
r
Then,
(
n
,
r
)
can be
1545
166
KVPY
KVPY 2010
Report Error
A
(
4000
,
4
1000
)
B
(
4000
,
4
1000
1
)
C
(
4
1000
,
4
1000
1
)
D
(
4000
,
4000
1
)
Solution:
We have,
2
x
2
+
2
x
+
1
=
0
⇒
x
=
−
4
2
±
4
−
8
x
=
−
4
2
±
2
i
=
2
−
1
±
i
x satisfies the equation
(
x
+
1
)
n
−
r
=
0
∴
(
2
−
1
±
i
+
1
)
n
−
r
=
0
[
r
∈
R
]
⇒
(
2
−
1
±
i
+
2
)
n
=
r
⇒
(
2
1
±
i
)
n
=
r
⇒
2
n
1
[
(
1
±
i
)
2
]
n
2
=
r
⇒
2
n
1
(
±
2
i
)
n
2
=
r
⇒
2
n
2
1
(
±
i
)
n
2
=
r
r is real
∴
n
∈
4
m
∴
n
=
4000
and
r
=
2
2
4000
1
=
4
1000
1