Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let R=(5 √5+11)2 n+1 and f=R-[R] where [.] denotes the greatest integer function then value of R f is
Q. Let
R
=
(
5
5
+
11
)
2
n
+
1
and
f
=
R
−
[
R
]
where [.] denotes the greatest integer function then value of
R
f
is
221
144
Binomial Theorem
Report Error
A
2
2
n
+
1
B
4
2
n
+
1
C
2
4
n
+
1
D
4
2
n
Solution:
R
=
(
5
5
+
11
)
2
n
+
1
=
1
+
f
,
0
<
f
<
1
Let
f
′
=
(
5
5
−
11
)
2
n
+
1
,
0
<
f
′
<
1
∴
(
5
5
)
2
n
+
1
+
2
n
+
1
C
1
(
5
5
)
2
n
.11
+
…
=
I
+
f
∵
−
1
<
f
−
f
′
<
1
∴
(
5
5
)
2
n
+
1
−
2
n
+
1
C
1
(
5
5
)
2
n
⋅
11
+
…
.
f
′
∴
2
(
2
n
+
1
C
1
⋅
(
5
5
)
2
n
⋅
11
+
…
.
)
=
I
+
f
−
f
′
=
I
∴
R
f
=
R
f
′
=
(
5
5
+
11
)
2
n
+
1
⋅
(
5
5
−
11
)
2
n
+
1
=
(
125
−
121
)
2
n
+
1
=
4
2
n
+
1