Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let r1, r2 and r3 be the solutions of the equation x3-2 x2+4 x+5074=0 then the value of (r1+2)(r2+2)(r3+2) is
Q. Let
r
1
,
r
2
and
r
3
be the solutions of the equation
x
3
−
2
x
2
+
4
x
+
5074
=
0
then the value of
(
r
1
+
2
)
(
r
2
+
2
)
(
r
3
+
2
)
is
858
103
Complex Numbers and Quadratic Equations
Report Error
A
5050
B
5066
C
-5050
D
-5066
Solution:
x
3
−
2
x
2
+
4
x
+
5074
=
(
x
−
r
1
)
(
x
−
r
2
)
(
x
−
r
3
)
put
x
=
−
2
−
8
−
8
−
8
+
5074
=
−
(
2
+
r
1
)
(
2
+
r
2
)
(
2
+
r
3
)
∴
5050
=
−
(
2
+
r
1
)
(
2
+
r
2
)
(
2
+
r
3
)
(
2
+
r
1
)
(
2
+
r
2
)
(
2
+
r
3
)
=
−
5050