Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $r_1, r_2$ and $r_3$ be the solutions of the equation $x^3-2 x^2+4 x+5074=0$ then the value of $\left(r_1+2\right)\left(r_2+2\right)\left(r_3+2\right)$ is

Complex Numbers and Quadratic Equations

Solution:

$x^3-2 x^2+4 x+5074=\left(x-r_1\right)\left(x-r_2\right)\left(x-r_3\right) $
$\text { put } x=-2$
$-8-8-8+5074=-\left(2+r_1\right)\left(2+r_2\right)\left(2+r_3\right) $
$\therefore 5050=-\left(2+r_1\right)\left(2+r_2\right)\left(2+r_3\right)$
$\left(2+r_1\right)\left(2+r_2\right)\left(2+r_3\right)=-5050$