Q.
Let R1 and R2 be two relations defined as follows: R1={(a,b)∈R2:a2+b2∈Q} and R2={(a,b)∈R2:a2+b2∈/Q}
where Q is the set of all rational numbers. Then:
Let a2+b2∈Q & b2+c2∈Q
eg. a=2+3 & b=2−3 a2+b2=14∈Q
Let c=(1+23) b2+c2=20∈Q
But a2+c2=(2+3)2+(1+23)2∈/Q
for R2 Let a2=1,b2=3 & c2=2 a2+b2∈/Q & b2+c2∈/Q
But a2+c2 & ∈Q