Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let R 1= ( a , b ) ∈ N × N :| a - b | ≤ 13 and R 2= ( a , b ) ∈ N × N :| a - b | ≠ 13 . Then on N :
Q. Let
R
1
=
{(
a
,
b
)
∈
N
×
N
:
∣
a
−
b
∣
≤
13
}
and
R
2
=
{(
a
,
b
)
∈
N
×
N
:
∣
a
−
b
∣
=
13
}
.
Then on
N
:
510
146
JEE Main
JEE Main 2022
Relations and Functions - Part 2
Report Error
A
Both
R
1
and
R
2
are equivalence relations
35%
B
Neither
R
1
nor
R
2
is an equivalence relation
25%
C
R
1
is an equivalence relation but
R
2
is not
32%
D
R
2
is an equivalence relation but
R
1
is not
8%
Solution:
R
1
=
{(
a
,
b
)
∈
N
×
N
:
∣
a
−
b
∣
≤
13
}
R
2
=
{(
a
,
b
)
∈
N
×
N
:
∣
a
−
b
∣
=
13
}
For
R
1
:
i) Reflexive relation
(
a
,
a
)
∈
N
×
N
:
∣
a
−
a
∣
≤
13
ii) Symmetric relation
(
a
,
b
)
∈
R
1
,
(
b
,
a
)
∈
R
1
:
∣
b
−
a
∣
≤
13
iii) Transitive relation
(
a
,
b
)
∈
R
1
,
(
b
,
c
)
∈
R
1
,
(
a
,
c
)
∈
R
1
:
(
1
,
3
)
∈
R
1
,
(
3
,
16
)
∈
R
1
but
(
1
,
16
)
∈
/
R
1
For
R
2
:
i) Reflexive relation
(
a
,
a
)
∈
N
×
N
:
∣
a
−
a
∣
=
13
ii) Symmetric relation
(
b
,
a
)
∈
N
×
N
:
∣
b
−
a
∣
=
13
iii) Transitive relation
(
a
,
b
)
∈
R
2
,
(
b
,
c
)
∈
R
2
,
(
a
,
c
)
∈
R
2
(
1
,
3
)
∈
R
2
,
(
3
,
14
)
∈
R
2
but
(
1
,
14
)
∈
/
R
2