Q.
Let px4+qx3+rx2+sx+t=∣∣x2+3xx+1x−3x−1−2xx+4x+3x−43x∣∣ be an identity, where p,q,r,s and t are constants, then the value of s is equal to
3369
172
NTA AbhyasNTA Abhyas 2020Matrices
Report Error
Answer: 71
Solution:
Differentiating both sides, we get, 4px3+3qx2+2xr+s=∣∣2x+3x+1x−31−2xx+41x−43x∣∣+∣∣x2+3x1x−3x−1−2x+4x+313x∣∣+∣∣x2+3xx+11x−1−2x1x+3x−43∣∣
Putting x=0 , we get, s=∣∣31−31041−40∣∣+∣∣01−3−1−24310∣∣+∣∣011−1013−43∣∣ s=64−3+10=71