Q.
Let PQ be a double ordinate of the parabola, y2=−4x, where P lies in the second quadrant. If R divides PQ in the ratio 2:1, then the locus of R is :
LetP(−at12,2at1), Q(−at12,−2at1) and R(h,k)
By using section formula, we have h=−at12,k=3−2at1 k=−32at1 ⇒3k=−2at1 ⇒9k2=4a2t12=4a(−h) ⇒9k2=−4ah ⇒9k2=−4h ⇒9y2=−4x