Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let PQ be a double ordinate of the parabola, y2= - 4x, where P lies in the second quadrant. If R divides PQ in the ratio 2: 1, then the locus of R is :
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $PQ$ be a double ordinate of the parabola, $y^2= - 4x$, where P lies in the second quadrant. If R divides $PQ$ in the ratio $2 : 1$, then the locus of R is :
JEE Main
JEE Main 2015
Conic Sections
A
$9y^2 = 4x$
B
$9y^2 = - 4x$
C
$3y^2 = 2x$
D
$3y^2 = - 2x$
Solution:
$Let P\left(-at^{2}_{1}, 2at_{1}\right),$
$Q\left(-at^{2}_{1}, -2at_{1}\right)$ and $R\left(h, k\right)$
By using section formula, we have
$h=-at^{2}_{1}, k=\frac{-2at_{1}}{3}$
$k=-\frac{2at_{1}}{3}$
$\Rightarrow 3k=-2at_{1}$
$\Rightarrow 9k^{2}=4a^{2}\,t^{2}_{1}=4a\left(-h\right)$
$\Rightarrow 9k^{2}=-4ah$
$\Rightarrow 9k^{2}=-4h$
$\Rightarrow 9y^{2}=-4x$