Q.
Let P(x)=x4+ax3+bx2+cx+d, where a,b,c,d are real constants. If P(1)=10,P(2)=20 and P(3)=30 then the value of 101(P(12)+P(−8)) is equal to
151
97
Complex Numbers and Quadratic Equations
Report Error
Solution:
P(x)−10x=0 have roots x=1,2,3 ⇒P(x)=(x−1)(x−2)(x−3)(x−α)+10x where x=α is fourth root ∴P(12)=120+11⋅10⋅9(12−α) P(−8)=−80+9⋅10⋅11(8+α)
___________________________ ∴P(12)+P(−8)=40+9⋅10⋅11⋅20 =10P(12)+P(−8)=4+1980=1984