Q.
Let P(x) be a real polynomial of degree 3 which vanishes at x=−3. Let P(x) have local minima at x=1, local maxima at x=−1 and −1∫1P(x)dx=18, then the sum of all the coefficients of the polynomial P(x) is equal to ________.
Let p′(x)=a(x−1)(x+1)=a(x2−1) p(x)=a∫(x2−1)dx+c =a(3x3−x)+c
Now p(−3)=0 ⇒a(−327+3)+c=0 ⇒−6a+c=0…(1)
Now −1∫1(a(3x3−x)+c)dx∣=18 =2c=18⇒c=9…(2) ⇒ from (1)&(2) ⇒−6a+9=0 ⇒a=23 ⇒p(x)=23(3x3−x)+9
sum of coefficient =21−23+9 =8