Q.
Let P(x) be a polynomial of degree 6 defined on real numbers and graph of y=P(x) is symmetrical w.r.t. y-axis. If P(1)=2,P(2)=5,P(3)=10 and R(x) is remainder when P(x) is divided by
(A) Θ Graph is symmetrical w.r.t. y-axis. ∴P(x) is even function ∴P(x)=(x2−1)(x2−4)(x2−9)+(x2+1)
dividing P(x) by (x−1)(x−2)(x−3), we get remainder as R(x)=x2+1 ∴ Minimum value of R(x)=1
(C)sin−1(sinR(1))+cos−1(cosR(1))+tan−1(tanR(1))=sin−1(sin2)+cos−1(cos2)+tan−1(tan2) =π−2+2+2−π=2
(D)sin−1(sinR(2))+cos−1(cosR(2))+tan−1(tanR(1))=sin−1(sin5)+cos−1(cos5)+tan−1(tan2) =5−2π+2π−5+2−π=2−π