Let P(x)=ax4+bx3+cx2+dx+e
Now, x→0Lim(2x3P(−x)−1)x1=−3 ∴x→0Lim(x4P(−x)−2x3)=−6⇒x→0Lim(x4ax4−bx3+cx2−dx+e−2x3)=−6
So, e=0,d=0,c=0 b+2=0 and a=−6⇒P(x)=−6x4−2x3 P(x)=−6x4−2x3=−2x3(3x+1) P′(x)=−24x3−6x2=−6x2(4x+1)
So, P(x) has maxima but no minima.