We have, p(x)=a0+a1x+a2x2+⋯+anxn p(2)=−15,p(−1)=1,p(0)=7p(1)=9, p(2)=13,p(3)=25
Clearly, p(x) is an increasing function ∴ n is an odd number
Here, n=3 or 5
put n=3, p(x)=a0+a1x+a2x2+a3x3 p(0)=a0=7 p(−1)=1=a0−a1+a2−a3…(i) p(1)=9=a0+a1+a2+a3…(ii)
On adding Eqs. (i) and (ii), we get a2=−2 ∴1=7−a1−2−a3 ⇒a1+a3=7−2−1=4…(iii) ⇒p(2)=13=a0+2a1+4a2+8a3 ⇒13=7+2a1−8+8a3 ⇒a1+4a3=7…(iv)
On solving Eqs. (iii) and (iv), we get a1=3,a3=1 ∴p(x)=7+3x−2x2+x3
which is satisfies p(−2) and p(3) ∴n=3