Q.
Let P(x)=35−6x−9x2 and Q(y)=−4y2+4y+213
If there exists unique pair of real number (x,y) such that P(x)Q(y)=20, then the value of (6x+10y) is _____
2132
200
Complex Numbers and Quadratic Equations
Report Error
Answer: 3
Solution:
We have P(x)=35−6x−9x2=−(3x+1)2+38 ⇒Pmax=38
Similarly, Q(y)=−4y2+4y+213 =−(2y−1)2+215 ⇒Qmax=215
Now, Pmax×Qmax=38×215=20
So (x,y)≡(−31,21)
Hence, 6x+10y=6(3−1)+10(21) =−2+5=3