Q.
Let P(S) denote the power set of S={1,2,3,….,10}. Define the relations R1 and R2 on P(S) as A1B if (A∩Bc)∪(B∩Ac)=∅ and A2B if A∪Bc=B∪Ac,∀A,B∈P(S). Then :
S={1,2,3,……10} P(S)= power set of S AR,B⇒(A∩B)∪(A∩B)=ϕ R1 is reflexive, symmetric For transitive (A∩B)∪(A∩B)=ϕ;{a}=ϕ={b}A=B (B∩C)∪(B∩C)=ϕ∴B=C ∴A=C equivalence.
R2≡A∪B=A∪B R2→ Reflexive, symmetric for transitive