Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let p, q, r ∈ R+and 27 p q r ≥(p+q+r)3 and 3 p+4 q+5 r=12 then p3+q4+r5 is equal to
Q. Let
p
,
q
,
r
∈
R
+
and
27
pq
r
≥
(
p
+
q
+
r
)
3
and
3
p
+
4
q
+
5
r
=
12
then
p
3
+
q
4
+
r
5
is equal to
1646
252
Sequences and Series
Report Error
A
3
B
6
C
2
D
None of these
Solution:
27
pq
r
≥
(
p
+
q
+
r
)
3
⇒
(
pq
r
)
1/3
≥
3
p
+
q
+
r
⇒
p
=
q
=
r
Also,
3
p
+
4
q
+
5
r
=
12
⇒
p
=
q
=
r
=
1