Q.
Let p,q,r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies the equation p×[(x−q)×p]+q×[(x−r)×q] +r×[(x−p)×r]=0, then x is given by
Since, p,q,r are mutually perpendicular vectors of same magnitude, so let us consider ∣p∣=∣q∣=∣r∣=λ and p⋅q=q⋅r=r⋅p=0..... (i)
Given, p×{(x−q)×p}+q×{(x−r)×q} +r×{(x−p)×r}=0 ⇒(p⋅p)(x−q)−{p⋅(x−q)}p+(q⋅q)(x−r) −{q⋅(x−r)}q+(r⋅r)(x−p)−{r⋅(x−p)}r=0 ⇒x(p⋅p)+(q⋅q)+(r⋅r)}−(p⋅p)q −(q⋅q)r−(r⋅r)p=(x⋅p)p+(x⋅q)q+(x⋅r)r ⇒3x∣λ∣2−(p+q+r)∣λ∣2=(x⋅p)p +(x⋅q)q+(x⋅r)r....(ii)
Taking dot of Eq. (ii) with p, we get 3(x⋅p)∣λ∣2−∣λ∣4=(x⋅p)∣λ∣2⇒x⋅p=21∣λ∣2
Similarly, taking dot of Eq. (ii) with q and r respectively, we get x⋅q=2∣λ∣2=x⋅r ∴ Eq. (ii) becomes 3x∣λ∣2−(p+q+r)∣λ∣2=2∣λ∣2(p+q+r) ⇒3x=21(p+q+r)+(p+q+r)⇒x=21(p+q+r)