Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P Q R be a triangle of area Δ with a=2, b=7 / 2, and c=5 / 2, where a, b, and c are the lengths of the sides of the triangle opposite to the angles at P, Q, and R, respectively. Then (2 sin P- sin 2 P/2 sin P+ sin 2 P) equals
Q. Let
PQR
be a triangle of area
Δ
with
a
=
2
,
b
=
7/2
, and
c
=
5/2
, where
a
,
b
, and
c
are the lengths of the sides of the triangle opposite to the angles at
P
,
Q
, and
R
, respectively. Then
2
s
i
n
P
+
s
i
n
2
P
2
s
i
n
P
−
s
i
n
2
P
equals
311
156
Trigonometric Functions
Report Error
A
4Δ
3
B
4Δ
45
C
(
4Δ
3
)
2
D
(
4Δ
45
)
2
Solution:
2
s
i
n
P
+
2
s
i
n
P
c
o
s
P
2
s
i
n
P
−
2
s
i
n
P
c
o
s
P
=
1
+
c
o
s
P
1
−
c
o
s
P
=
2
c
o
s
2
2
P
2
s
i
n
2
2
P
=
tan
2
2
P
=
s
(
s
−
a
)
(
s
−
b
)
(
s
−
c
)
=
Δ
2
((
s
−
b
)
(
s
−
c
)
)
2
=
Δ
2
(
(
2
1
)
(
2
3
)
)
2
=
(
4Δ
3
)
2