In given question p,q∈R. If we take other root
as any real number α,
then quadratic equation will be x2−(α+2−3)x+α.(2−3)=0
Now, we can have none or any of the options
can be correct depending upon 'α'
Instead of p,q∈R it should be p,q∈Q then
other root will be 2+3 ⇒p=−(2+∣3−2−3)=−4
and q=(2+3)(2−3)=1 ⇒p2−4q−12=(−4)2−4−12 =16−16=0