Q.
Let p&q be the two roots of the equation, mx2+x(2−m)+3=0. Let m1,m2 be the two values of m satisfying qp+pq=32. Determine the numerical value of m22m1+m12m2.
351
88
Complex Numbers and Quadratic Equations
Report Error
Answer: 99
Solution:
p+q=mm−2;pq=m3
now m1 and m2 satisfies qp+pq=32⇒pqp2+q2=32 pq(p+q)2−2pq=32 (mm−2)2−m6=32⋅m3=m2⇒m2(m−2)2=m8 m2−4m+4=8m⇒m2−12m+4=0 ∴m1+m2=12 and m1m2=4
now m22m1+m12m2=(m1m2)2m12+m23=(m1m2)2(m1+m2)3−3m1m2(m1+m2) =16123−12⋅12=16122⋅11=99