Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Pk be a point in x y plane whose x coordinate is 1+(k/n)(k=1,2,3, ldots ldots, n) on the curve y= ln x. If A is (1,0), then undersetn arrow ∞ textLim (1/n) displaystyle∑k=1n( AP k )2 equals
Q. Let
P
k
be a point in
x
y
plane whose
x
coordinate is
1
+
n
k
(
k
=
1
,
2
,
3
,
……
,
n
)
on the curve
y
=
ln
x
. If
A
is
(
1
,
0
)
, then
n
→
∞
Lim
n
1
k
=
1
∑
n
(
A
P
k
)
2
equals
200
76
Integrals
Report Error
A
3
1
+
2
ln
2
2
B
3
1
+
2
ln
2
(
e
2
)
C
3
1
+
ln
2
(
e
2
)
D
3
1
+
2
ln
(
e
2
)
Solution:
L
=
n
→
∞
Lim
n
1
k
=
1
∑
4
(
(
n
k
)
2
+
ln
2
(
1
+
n
k
)
)
=
0
∫
1
(
x
2
+
ln
2
(
1
+
x
)
)
d
x
=
3
1
+
2
ln
2
e
2