for reflexive : sec2a−tan2a=1 an identity forall x∈R⇒ reflexive
for symmetric : sec2a−tan2b=1…(i) to prove sec2b−tan2a=1 sec2b−tan2a=1+tan2b−(sec2a−1)=1 +tan2b+1−sec2a=sec2a−tan2b=1⇒ symmetric [∵ from (1)]
for transitive: sec2a−tan2b=1……(ii) sec2b−tan2c=1……(iii)
to prove :sec2a−tan2c=1
proof L.H.S.1+tan2b+1−sec2b from (ii) & (iii) =secb−tan2b identify =1 ⇒P is reflexive, symmetric and transitive.