Q.
Let P be the point on the parabola y2=4x which is at the shortest distance from the center S of the circle x2+y2−4x−16y+64=0. Let Q be the point on the circle dividing the line segment SP internally. Then
P(t2,2t) centre of circle S(2,8)
Distance SP=(t2−2)2+(2t−8)2 z=(t2−2)2+(2t−8)2 dtdz=2(t2−2)⋅(2t)+2(2t−8)⋅2
for minima ⇒dtdz=0 ⇒4[t3−2t+2t−8]=0 ⇒t=2 ∴P(4,4);S(2,8)
(A) SP=25
(B) QPSQ=25−22=5−11 QPSQ=45+1
(C) Parabola y2=4x ⇒2ydxdy=4 ⇒(dxdy)(4,4)=21
Equation of normal y−4=−2(x−4) ∴x intercept =6
(D) Slope of SP=2−48−4=−2 ∴ Slope of tangent at Q is 21 (∵ tangent is perpendicular to SP).