Q.
Let P be the point of intersection of the common tangents to the parabola y2=12x and the hyperbola 8x2−y2=8 . If S and S′ denote the foci of the hyperbola where S lies on the positive x -axis then P divides SS′ in a ratio:
Given equations
parabola y2=12x
hyperbola 8x2−y2=8.
Slope tangent forms to parabola and hyperbola are y=mx+m3&y=mx±1(m)2−8
Above lines are representing same equation. ⇒(m3)2=m2−8 ⇒9=m2(m2−8) ⇒m2=9&m2=−1 ⇒m=±3
Common tangents are y=3x+1&y=−3x−1.
Point of intersection of above tangents is P(3−1,0)
Foci of hyperbola a=1,b=22,8=1(e2−1) ⇒e=3 S(3,0)&S′(−3,0)
Let intersection point divides foci in k:1 ratio. ⇒3−1=k+1−3k+3 ⇒k=5:4.