Q.
Let ' p ' be an integer for which both roots of the quadratic equation x2+2(p−3)x+9=0 lies in (−6,1). If 2,g1,g2,……,g19,g20,p are in G.P., then find the value of g4g17.
Let f(x)=x2+2(p−3)x+9
Since roots lies in (−6,1), so we should have following conditions.
(i)D≥0⇒4(p−3)2−36≥0 ⇒p(p−6)≥0 ⇒p≤0 or p≥6....(1)
(ii) f(−6)>0⇒p<427...(2)
(iii) f(1)>0⇒p>−2....(3)
(iv) −6<2α+β<1⇒2<p<9...(4) ∴ From(i), (ii), (iii) \&(iv),
We get 6≤p<427 ∴ integral value of ' p ' =6
Since 2,g1,g2,g3,………,g17,g18,g19,g20,6 are in G.P. ∴g4g17=2×6=12