Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P and Q be any points on the curves (x-1)2+(y+1)2=1 and y=x2, respectively. The distance between P and Q is minimum for some value of the abscissa of P in the interval
Q. Let
P
and
Q
be any points on the curves
(
x
−
1
)
2
+
(
y
+
1
)
2
=
1
and
y
=
x
2
, respectively. The distance between
P
and
Q
is minimum for some value of the abscissa of
P
in the interval
492
0
JEE Main
JEE Main 2022
Conic Sections
Report Error
A
(
0
,
4
1
)
B
(
2
1
,
4
3
)
C
(
4
1
,
2
1
)
D
(
4
3
,
1
)
Solution:
Q
=
(
t
,
t
2
)
m
CQ
=
m
normal
t
−
1
t
2
+
1
=
−
2
t
1
Let
f
(
t
)
=
2
t
3
+
3
t
−
1
f
(
4
1
)
f
(
3
1
)
<
0
⇒
t
∈
(
4
1
,
3
1
)
P
≡
(
1
+
cos
(
90
+
θ
)
,
−
1
+
sin
(
90
+
θ
))
P
=
(
1
−
sin
θ
,
−
1
+
cos
θ
)
m
normal
=
m
CP
⇒
−
2
t
1
=
−
s
i
n
θ
c
o
s
θ
⇒
tan
θ
=
2
t
x
=
1
−
sin
θ
=
1
−
1
+
4
t
2
2
t
=
g
(
t
)
(let)
⇒
g
′
(
t
)
<
0
g
(
t
)
↓
function
t
∈
(
4
1
,
3
1
)
⇒
g
(
t
)
∈
(
0.44
,
0.485
)
∈
(
4
1
,
2
1
)