Q.
Let p and q are positive integers, f is a function defined for positive numbers & attains only positive values such that f[xf(y)]=xayb then
1797
217
Relations and Functions - Part 2
Report Error
Solution:
Given f(x⋅f(y)=xayb....(i)
Replacing x by f(y)1, we have from (i) f(x⋅x1)=(f(y)1)a⋅yb ∴f(1)=(f(y))ayb ⇒(f(y))a=f(1)yb ⇒f(y)=(f(y))1/ayb/a ( Putting y=1) ⇒f(1)=1 ∴f(1)=(f(y))ayb=1 ⇒(f(y))a=yb ⇒f(1)=(f(y))ayb=1 ⇒(f(y))a=yb ⇒f(y)=yb/a
Replacing y as x, we have f(x)=xb/a....(∗) ∴f(x⋅yb/a)=xayb from (i)
Let yb/a=t ⇒y=ta/b ⇒f(x⋅t)=xata ⇒f(x)=xa...(∗∗)
Now from (∗) & (∗∗), we have xb/a=xa ⇒ba=a1 ⇒b=a2