Q.
Let P (3secθ,2tanθ) and Q (3secϕ,2tanϕ) where θ+ϕ=2π, be two distinct points on the hyperbola 9x2−4y2=1. Then the ordinate of the point of intersection of the normals at P and Q is :
p(3secθ,2tanθ)Q=(3secϕ,2tanϕ) θ+ϕ=2πQ=(3cosecθ,2cotθ)
Equation of normal at p= =3xcosθ+2ycotθ=13 =3xsinθcosθ+2ycosθ=13sinθ...(1)
equation of normal at Q ⇒ =3xsinθ+2ytanθ=13 =3xsinθcosθ+2ysinθ=13cosθ...(2) (1)−(2)⇒ 2y(cosθ−sinθ)=13(sinθ−cosθ) 2y=−13⇒2−13