Q.
Let P=⎣⎡323−10−5−2α0⎦⎤, where α∈R. Suppose Q=[qij] is a matrix satisfying PQ=kI3 for some non -zero k∈R If q23=−8k and ∣Q∣=2k2, then α2+k2 is equal to ________.
PQ=kI ∣P∣⋅∣Q∣=k3 ⇒∣P∣=2k=0 ⇒P is an invertible matrix ∵PQ=kI ∴Q=kP−1I ∴Q=2 adj.P ∵q23=−8k 2−(3α+4)=−8k ⇒k=4 ∴∣P∣=2k ⇒k=10+6α…(i)
Put value of k in (i).. we get α=−1