Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P=[3 -1 -2 2 0 α 3 -5 0], where α ∈ R. Suppose Q=[qi j] is a matrix such that P Q=k I, where k ∈ R, k ≠ 0 and I is the identity matrix of order 3 . If q 23=-( k /8) and operatornamedet( Q )=( k 2/2), then
Q. Let
P
=
⎣
⎡
3
2
3
−
1
0
−
5
−
2
α
0
⎦
⎤
, where
α
∈
R
. Suppose
Q
=
[
q
ij
]
is a matrix such that
PQ
=
k
I
, where
k
∈
R
,
k
=
0
and
I
is the identity matrix of order
3
. If
q
23
=
−
8
k
and
det
(
Q
)
=
2
k
2
, then
5935
189
JEE Advanced
JEE Advanced 2016
Report Error
A
α
=
0
,
k
=
8
B
4
α
−
k
+
8
=
0
C
det
(
P
adj
(
Q
))
=
2
9
D
det
(
Q
adj
(
P
))
=
2
13
Solution:
PQ
=
k
I
Q
=
k
P
−
1
=
∣
P
∣
k
adj
P
=
12
α
+
20
k
=
⎣
⎡
5
α
3
α
−
10
10
6
12
−
α
−
(
3
α
+
4
)
α
⎦
⎤
q
23
=
−
8
k
=
12
α
+
20
k
(
−
3
α
−
4
)
12
α
+
20
=
24
α
+
32
−
12
=
12
α
α
=
−
1
Q
=
8
k
⎣
⎡
−
5
−
3
−
10
10
6
12
1
−
1
2
⎦
⎤
∣
Q
∣
=
2
k
2
=
8
3
k
3
(
−
5
(
12
+
12
)
−
10
(
−
6
−
10
)
+
1
(
−
36
+
60
))
2
1
=
8.8.8
k
(
−
120
+
160
+
24
)
2
1
=
8
k
k
=
4
∣
P
adj
Q
∣
=
∣
∣
P
adj
(
4
P
−
1
)
∣
∣
=
∣
∣
16
P
adj
P
−
1
∣
∣
=
∣
∣
16
P
⋅
∣
P
∥
P
∣
∣
=
∣
P
∣
3
1
6
3
∣
∣
P
2
∣
∣
=
∣
P
∣
1
6
3
=
8
1
6
3
=
2
9
∣
Q
adj
P
∣
=∣
Q
adj
(
k
Q
−
1
∣
=
∣
∣
k
2
Q
⋅
∣
Q
∣
Q
∣
∣
=
2
3
∣
Q
∣
2
=
2
3
⋅
2
6
=
2
9