Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let P = [1&0&0 3&1&0 9&3&1] and Q = [qij] be two 3×3 matrices such that Q-p5 = I3. Then (q21 + q31/q32) is equal to
Q. Let
P
=
⎣
⎡
1
3
9
0
1
3
0
0
1
⎦
⎤
and
Q
=
[
q
ij
]
be two
3
×
3
matrices such that
Q
−
p
5
=
I
3
. Then
q
32
q
21
+
q
31
is equal to
12545
216
JEE Main
JEE Main 2019
Matrices
Report Error
A
15
11%
B
9
28%
C
135
28%
D
10
33%
Solution:
P
=
⎣
⎡
1
3
9
0
1
3
0
0
1
⎦
⎤
P
2
=
⎣
⎡
1
3
+
3
9
+
9
+
9
0
1
3
+
3
0
0
1
⎦
⎤
P
3
=
⎣
⎡
1
3
+
3
+
3
6.9
0
1
3
+
3
+
3
0
0
1
⎦
⎤
P
n
=
⎣
⎡
1
3
n
2
n
(
n
+
1
)
3
2
0
1
3
n
0
0
1
⎦
⎤
P
5
=
⎣
⎡
1
5.3
15.9
0
1
5.3
0
0
1
⎦
⎤
Q
=
P
5
+
I
3
Q
=
⎣
⎡
2
15
135
0
2
15
0
0
2
⎦
⎤
q
32
q
21
+
q
31
=
15
15
+
135
=
10
Aliter
P
=
⎝
⎛
1
0
0
0
1
0
0
0
1
⎠
⎞
+
⎝
⎛
0
3
9
0
0
3
0
0
0
⎠
⎞
P
=
I
+
X
X
=
⎝
⎛
0
3
9
0
0
3
0
0
0
⎠
⎞
X
2
=
⎝
⎛
0
0
9
0
0
0
0
0
0
⎠
⎞
X
3
=
0
P
5
=
I
+
5
X
+
10
X
2
Q
=
P
5
+
I
=
2
I
+
5
X
+
10
X
2
Q
=
⎝
⎛
2
0
0
0
2
0
0
0
2
⎠
⎞
+
⎝
⎛
0
15
15
0
0
15
0
0
0
⎠
⎞
+
⎝
⎛
0
0
90
0
0
0
0
0
0
⎠
⎞
⇒
Q
=
⎝
⎛
2
15
135
0
2
15
0
0
2
⎠
⎞