Q.
Let ω=1 be a complex cube root of unity. If
(4+5ω+6ω2)n2+2+(6+5ω2+4ω)n2+2+(5+6ω+4ω2)n2+2=0, and n∈N; where n∈[1,100], then number of values of n is ____
140
158
Complex Numbers and Quadratic Equations
Report Error
Answer: 33
Solution:
(4+5ω+6ω2)n2+2+(6+5ω2+4ω)n2+2+(5+6ω+4ω2)n2+2 =0 ⇒(4+5ω+6ω2)n2+2[1+ωn2+2+ω2n2+4]=0 ⇒n=3λ,n=3λ+1,3λ+2 ∴n=3,6,9,12,…,99
So, number of values of n is 33 .