Q. Let $\omega \neq 1$ be a complex cube root of unity. If $\left(4+5 \omega+6 \omega^{2}\right)^{n^{2}+2}+\left(6+5 \omega^{2}+4 \omega\right)^{n^{2}+2}+\left(5+6 \omega+4 \omega^{2}\right)^{n^{2}+2}=0$, and $n \in N$; where $n \in[1,100]$, then number of values of $n$ is ____
Complex Numbers and Quadratic Equations
Solution: