Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ω be a complex number such that 2 ω + 1 = z where z = √-3 ,If |1&1&1 1&-ω2 - 1 &ω2 1&ω2& ω7| = 3 k , then k is equal to :
Q. Let
ω
be a complex number such that
2
ω
+
1
=
z
where
z
=
−
3
,If
∣
∣
1
1
1
1
−
ω
2
−
1
ω
2
1
ω
2
ω
7
∣
∣
=
3
k
,
then
k
is equal to :
3935
208
JEE Main
JEE Main 2017
Determinants
Report Error
A
z
10%
B
-1
24%
C
1
24%
D
-z
41%
Solution:
2
ω
+
1
=
z
,
z
=
3
i
ω
=
2
−
1
+
3
i
→
Cube root of unity.
C
1
→
C
1
+
C
2
+
C
3
∣
∣
1
1
1
1
−
1
−
ω
2
ω
2
1
ω
2
ω
7
∣
∣
=
∣
∣
1
1
1
1
ω
ω
2
1
ω
2
ω
∣
∣
=
∣
∣
3
0
0
1
ω
ω
2
1
ω
2
ω
∣
∣
=
3
(
ω
2
−
ω
4
)
=
3
[
(
2
−
1
−
3
i
)
−
(
2
−
1
+
3
i
)
]
=
−
3
3
i
=
−
3
z
∴
k
=
−
z