Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ω=-(1/2)+i(√ 3/2), then value of the determinant | 1 1& 1 1 -1-ω2 ω2 1 ω2 ω | is
Q. Let
ω
=
−
2
1
+
i
2
3
,
then value of the determinant
∣
∣
1
1
1
1
−
1
−
ω
2
ω
2
1
ω
2
ω
∣
∣
i
s
2437
250
IIT JEE
IIT JEE 2002
Complex Numbers and Quadratic Equations
Report Error
A
3
ω
8%
B
3
ω
(
ω
−
1
)
44%
C
3
ω
2
35%
D
3
ω
(
1
−
ω
)
14%
Solution:
Let
Δ
=
∣
∣
1
1
1
1
−
1
−
ω
2
ω
2
1
ω
2
ω
∣
∣
i
s
Applying
R
2
→
R
2
−
R
1
;
R
3
→
R
3
−
R
1
=
∣
∣
1
0
0
1
−
2
−
ω
2
ω
2
−
1
1
ω
2
−
1
ω
−
1
∣
∣
=
(
−
2
−
ω
2
)
(
ω
−
1
)
−
(
ω
2
−
1
)
2
=
−
2
ω
+
2
−
ω
3
+
ω
2
−
(
ω
4
−
2
ω
2
+
1
)
=
3
ω
2
−
3
ω
=
3
ω
(
ω
−
1
)
[
∵
ω
4
=
ω
]