Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $\omega=-\frac{1}{2}+i\frac{\sqrt 3}{2},$ then value of the determinant $\begin {vmatrix} 1 & 1& 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega \\ \end {vmatrix} is $

IIT JEEIIT JEE 2002Complex Numbers and Quadratic Equations

Solution:

Let $\Delta=\begin {vmatrix}1 & 1& 1 \\1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega \\\end {vmatrix} is$
Applying $R_2\rightarrow R_2-R_1;R_3\rightarrow R_3-R_1$
=$\begin {vmatrix}1 & 1& 1 \\0 & -2-\omega^2 & \omega^2-1 \\0 & \omega^2-1 & \omega-1 \\\end {vmatrix} $
$=(-2-\omega^2)(\omega-1)-(\omega^2-1)^2$
$=-2\omega+2-\omega^3+\omega^2-(\omega^4-2\omega^2+1)$
$=3\omega^2-3\omega=3\omega(\omega-1) [\because \omega^4=\omega]$