Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let ω=-(1/2)+(√3/2) i. Then the value of the determinant Δ=|1 1 1 1 -1-ω2 ω2 1 ω2 ω4| is
Q. Let
ω
=
−
2
1
+
2
3
i
. Then the value of the determinant
Δ
=
∣
∣
1
1
1
1
−
1
−
ω
2
ω
2
1
ω
2
ω
4
∣
∣
is
483
162
Complex Numbers and Quadratic Equations
Report Error
A
3
ω
B
3
ω
(
ω
−
1
)
C
3
ω
2
D
3
ω
(
1
−
ω
)
Solution:
Using
1
+
ω
2
=
−
ω
,
ω
4
=
ω
and applying
C
2
→
C
2
−
C
1
,
C
3
→
C
3
−
C
1
we get
Δ
=
∣
∣
1
1
1
0
ω
−
1
ω
2
−
1
0
ω
2
−
1
ω
−
1
∣
∣
=
(
ω
−
1
)
2
−
(
ω
2
−
1
)
2
=
(
ω
+
ω
2
−
2
)
(
ω
−
1
−
ω
2
+
1
)
=
(
−
3
)
(
ω
−
ω
2
)
=
3
ω
(
ω
−
1
)