Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let n ge 2 be a natural number and 0 < θ < p/2. Then ∫ (( sinn θ - sinθ)(1/n) cos θ/ sinn+1 θ) d θ is equal to: (Where C is a constant of integration)
Q. Let
n
≥
2
be a natural number and
0
<
θ
<
p
/2
.
Then
∫
s
i
n
n
+
1
θ
(
s
i
n
n
θ
−
s
i
n
θ
)
n
1
c
o
s
θ
d
θ
is equal to : (Where
C
is a constant of integration)
3108
200
JEE Main
JEE Main 2019
Integrals
Report Error
A
n
2
−
1
n
(
1
−
s
i
n
n
+
1
θ
1
)
n
n
+
1
+
C
0%
B
n
2
+
1
n
(
1
−
s
i
n
n
−
1
θ
1
)
n
n
+
1
+
C
33%
C
n
2
−
1
n
(
1
−
s
i
n
n
−
1
θ
1
)
n
n
+
1
+
C
50%
D
n
2
−
1
n
(
1
+
s
i
n
n
−
1
θ
1
)
n
n
+
1
+
C
17%
Solution:
∫
s
i
n
n
+
1
θ
(
s
i
n
n
θ
−
s
i
n
θ
)
1/
n
c
o
s
θ
d
θ
=
∫
s
i
n
n
+
1
θ
s
i
n
θ
(
1
−
s
i
n
n
−
1
θ
1
)
1/
n
d
θ
Put
1
−
s
i
n
n
−
1
θ
1
=
t
So
s
i
n
n
θ
(
n
−
1
)
cos
θ
d
θ
=
d
t
Now
n
−
1
1
∫
(
t
)
1/
n
d
t
=
(
n
−
1
)
1
n
1
+
1
(
t
)
n
1
+
1
+
C
(
n
−
1
)
1
(
1
−
s
i
n
n
−
1
θ
1
)
n
1
+
1
+
C