Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let n be an odd integer. If sin n θ = ∑nr=0 br sinr θ, for every value of θ, then
Q. Let n be an odd integer. If
sin
n
θ
=
∑
r
=
0
n
b
r
sin
r
θ
, for every value of
θ
, then
2487
214
Trigonometric Functions
Report Error
A
b
0
=
1
,
b
1
=
3
15%
B
b
0
=
0
,
b
1
=
n
47%
C
b
0
=
−
1
,
b
1
=
n
27%
D
b
0
=
0
,
b
1
=
n
2
−
3
n
+
3
11%
Solution:
Putting
θ
=
0
, we get
0
=
b
0
n
θ
=
∑
r
=
1
n
b
r
sin
r
θ
⇒
s
i
n
θ
s
i
n
n
θ
=
∑
r
=
1
n
b
r
(
sin
θ
)
r
−
1
=
b
1
+
b
2
sin
θ
+
b
3
sin
2
θ
+
.....
+
b
n
sin
n
−
1
θ
Taking limit as
θ
→
0
, we obtain
lim
θ
→
0
s
i
n
θ
s
i
n
n
θ
=
b
1
⇒
b
1
=
n
.
[
∵
lim
θ
→
0
θ
s
i
n
n
θ
=
lim
θ
→
0
c
o
s
θ
n
c
o
s
n
θ
=
1
n
×
1
=
n
]