Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let n be a positive integer. Let A = displaystyle∑ k =0 n (-1) k n C k [((1/2)) k +((3/4)) k +((7/8)) k +((15/16)) k +((31/32)) k ] If 63 A =1-(1/230), then n is equal to .
Q. Let
n
be a positive integer. Let
A
=
k
=
0
∑
n
(
−
1
)
k
n
C
k
[
(
2
1
)
k
+
(
4
3
)
k
+
(
8
7
)
k
+
(
16
15
)
k
+
(
32
31
)
k
]
If
63
A
=
1
−
2
30
1
, then
n
is equal to ________.
2164
208
JEE Main
JEE Main 2021
Binomial Theorem
Report Error
Answer:
6
Solution:
A
=
k
=
1
∑
a
n
C
k
[
(
−
2
1
)
k
+
(
4
−
3
)
k
+
(
8
−
7
)
k
+
(
16
−
15
)
k
+
(
32
−
37
)
k
]
A
=
(
1
−
2
1
)
n
+
(
1
−
4
3
)
n
+
(
1
−
8
7
)
n
+
(
1
−
16
15
)
n
+
(
1
−
32
31
)
a
A
=
2
n
1
+
4
n
1
+
8
n
1
+
1
6
n
1
+
3
2
n
1
A
=
2
n
1
(
1
−
2
n
1
1
−
(
2
n
1
)
5
)
⇒
A
=
(
2
n
−
1
)
(
1
−
2
5
n
1
)
(
2
n
−
1
)
A
=
1
−
2
5
n
1
, Given
63
A
=
1
−
2
30
1
Clearly
5
n
=
30
n
=
6